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Abstract— We present a robust environmental
classification approach, based on reassignment metti and log-
Gabor filters. In this approach the reassigned spémgram is
passed through a bank of 12 log-Gabor filter concanation
applied to three spectrogram patches, and the outps are
averaged and underwent an optimal feature selectioprocedure
based on a mutual information criterion. The proposd method is
tested on a database of 10 environmental sound ct&s. The
evaluation system is realized by using the multicks support
vector machines (SVM’s) that gave rise to a recogiwn rate of
the order 90.87%.
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I. INTRODUCTION

The environmental sounds domain is vast; it includes
sounds generated in domestic, business, and ou

environments and can offer many services, for nt#a

surveillance and security applications. Receniyne efforts
have been interested in detecting and
environmental sounds [1], [2].

In the literature, the majority of studies presapproaches fo

classifying sounds using such as acoustic, cepsiralpectral

descriptors. These descriptors can be used as lircation of
some, or even all, of these 1-D audio featuresthage[1].
Recently, some efforts emerge in the new reseairelatibn,
which demonstrate that image processing technigaesbe
applied in musical [3], and environmental sounds [d our
previous work [4], we have showed that spectrograams be
used as texture images. In order to enhance tbig,whis
paper develops method, based on spectrogram reassid
and spectro-temporal components.

classifyiﬁJ

sound However, the spectrogram reassignment is an appré@ac

refocusing the spectrogram by mapping the dataine-t
frequency coordinates that are nearer to the gg@n of the
analyzed signal support [5].

Besides, the reassignment method is applied to the
spectrogram to improve the readability of the tifreguency
representation, and to assure a better localizatidhe signal
components.

Indeed, many studies [6] and [7] show that speteroporal
modulations play an important role in automatic exte
recognition (ASR), in particular log-Gabor filters.

Our method begins by spectrogram reassignment
environmental sounds, which then was passed thramgh
averaged 12 log-Gabor filters concatenation appieethree
spectrogram patches, and finally passed througlopgimal
feature procedure based on mutual information.
classification step, we use the SVM’'s with multgda
¢ pproach: One-Against-One.

td B'P paper is organized as follows. Section 2 dessr
environmental sound classification system. ClasHion
results are given in Section 3. Finally conclusioase
esented in Section 4.

of

In

r

Il. ENVIRONMENTAL SOUND CLASSIFICATION BASED ON

REASSIGNMENTMETHOD AND LOG-GABOR FILTERS

A. Feature Extraction Method

The method consists in using the reassigned spgatro
patch. The aim is to find the suitable part of $mapam,
where the efficient structure concentrates, whivkga better
result. We tested our method using log-Gabor fifterthree
spectrogram patches. We tested for patch numjes

105


PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.2, pp. 105-109, 2013

Copyright - IPCO 

PC
Typewriter
105


2,345, we remark that the satisfactory result is olsdi
for N, = 3.

nt(x;t, )
=t

The idea is to extra_ct three pgtches from eachsigmsd [ fuw.WV(h; u,Q)WV(x;t—u,w—Q)dud—Q
spectrogram. The first patch included frequenciesmf _ 2m 3)
0.01Hz to 128Hz, the second patch, from 128Hz t6H25 [ fWV(h; u, OWV(x; t — u,w — Q)dud_‘Q‘
and the third patch, from 256Hz to 512Hz. Indeedhepatch Zm
goes through 12 log-Gabor filters _
{G11, G132, ..., G4, G321, ..., Gos, Gy}, TOllowed by an average do
operation and then, Ml feature selection algoritlamused, Jfw.Ri*(h; u, DRI (st —u,w — Q)du»—
which constitutes the parameter vector for the sifizstion ] ] ETo) ©)
(Fig.1.). I Ri*(h; u, Q) Rl(x;t—u,W—Q)duE
=t
STFTr,(x;t,w).STFT*, (x; t, w)
Reassigned o - |STFT}, (x; t, w)|? ®)
»‘*’- Sty Information h\Ar by
®B(x;t, w)
=w
dQ
[ [QWV(h;u, QWV(x;t —u,w — Q)duﬁ
- (6)
Fig. 1. Feature extraction using 3 spectrograrotyest with [ fWV(hu, QWV(x;t —u,w — Q)duczi—Q
12 log-Gabor filters T
B. Reassignment Method
The spectrogram is the square modulus of the Shione _ w
Fourier Transforr STFT, (x;t, w) dQ
IJ Q. Ri*(h;u, ORI (x; t —u,w — Q)duﬁ
Sp(x; t, ) = |STFT, (x; £, w)|? 1 —-R 7
n )= h )l @) ffRi"(h;u,Q)Ri(x;t—u,w—Q)dug—f_[2
STFT,(x; t,w) = f:r;o x(Wh* (t —u)e /*%du (2) —
. . o STFTrp(x; t, ). STFT",(x; t, w)
Nevertheless, this representation has certain disadges. + Im ISTFT, (%, £, &) 2 (8)
This disadvantage is manifested by its unseparébleel hi5 %
allowing the spreads of the time and frequency ghings
bound, and even opposed [8], which leads to thetggram With RiCe: t,w) = x(6). X" (w)e ot

a loss of resolution and contrast [9].

Hence, the reassignment is going to re-focus teeggrspread

by the smoothing [10].However, the reassignmentiegton
in time—frequency representation provides to rumeer to its
poor time-frequency concentration.

In this case the smoothing kerdgl:(u, Q) is the Wigner-
Ville distribution of some unit energy analysis daw h(t),
with ¢rp(u, Q) = WV(h;u, Q) .

The values of the new position of energy contritmsi

(t(x; t, w), ®(x; t, w)) are given by the center of gravity of the

signal energy located in a bounded domain centend€d, w).

These coordinates are defined by the smoothing eker

drr(u, Q) and computed by means of short-time Fou
transforms in the following way [8]:

whereé (t) isthe Dirac impulse.

For more explication, you can see Appendix of [8he
corresponding equation to the reassignment operaier
writing in the following way:

MS, = ff Sy (x;t, W)5(t’ —t(x;t, w)).6(w’
©

W (x; t,w))de dw
w(x;t,w o
We adopted in this work the reassignment methaoatdier to
Brbtain a clear and easily interpreted spectrogramose
%urpose is to improve the classification systenfgoerance
realized in previous work [11].

Il

C. Log-Gabor Filters

Gabor filters offer an excellent simultaneous lalon of
spatial and frequency information [7]. They havengnaseful
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and important properties, in particular the capacio g
P prop P B 1(X;Y)=Zzp(x log P& Y)_ (15)

decompose an image into its underlying dominanttspe
temporal components [6]. XeX yey . . - .
The log-Gabor function in the frequency domain dam Wherep(x) = Pr(X = x) is the marginal probability density

described by the transfer functiaf(r,d) with polar function andp(x) =Pr(X =x), and p(x,y) =Pr(X =
coordinates [7]: x,Y = y) is the joint probability density function.

G(T, 9) = Gradial (T') Gangular(r) (10) F. SVM Classification

o g For the classification, we employ a Support Veditachine.
Wheres, 4qiq; () = e71080/f0)"/297 s the frequency responseThe SVM'’s is a tool for creating practical algorita for

of the radial component estimating multidimensional functions [13].
and Ganguiar (1) = exp (—(0/60)%/20%) , represents theIn the nonlinear case, the idea is to use a kernel
frequency response of the angular filter component. function K(xi,xj) , where K(xi,xj) satisfies the Mercer

We note tha(r, 8) are the polar coordinategrepresents the conditions [14]. Here, we used a Gaussian RBF kavhese
central filter frequency,f, is the orientation angle, formula is:

g-antigrepresent the scale bandwidth and angular bandwidth | —Jlx=x"|)?

respectively. k(x,x') = exp [T] 641
The log-Gabor feature representatid¢fi(x,y)|,, of a

magnitude spectrograms(x,y) was calculated as
convolution operation performed separately for thal and We hence adopted one approach of multiclass dleesttin:

aWhere”." indicates the Euclidean norm$f.

imaginary part of the log-Gabor filters: One-against-One. This approach consists in creatibmary
classification of each possible combination of séss and the
Re(S(t,Y))mn = s(x,y) Re(G(r 0 )) (11) result fork classes i%(k — 1)/2. The classification is then
wn e carried out in accordance with the majority votisgheme
IS G,y = $G6,3) * (G, 6,)) (1z) MOk

I1l. CLASSIFICATION RESULTS ANDDISCUSSION

(x,y) represents the time and frequency coordinates of a .
spectrogram, andn =1,..,N. =2 andn =1,..,Ng = 6 Our corpus of sounds comes from commercial CDs. A&

whereN, devotes the scale number aNgl the orientation used_lO classes of environmental sound_s as shoWab'lgz L

numberr This was followed by the magnitude calcoifafor All signals have a resolution .Of 16 bits _and a_simgp

the filt .b K outouts: y 9 frequency of 44100 Hz that is characterized by &dgo
€ fiiter bank outputs- temporal resolution and a wide frequency band.

NES] TABLE |
2 CLASSES OFSOUNDS AND NUMBER OF SAMPLES IN THEDATABASE USED FOR
= \/(Re(S(x, Y))m n) +Im(S(x%,Y))mn (13) PERFORMANCEEVALUATION
D. Averaging of Log-Gabor Filters Classes Train Test Total
i Door slams (Ds) 208 104 312
The averaged operation was calculated for eaclog-Zabor | gxpiosions (Ep) 38 18 56
filter appropriate for each three reassigned spgcim | Glass breaking (Gb) 38 18 56
patches. The purpose being to obtain a single oaipay [7]: Dog barks (Db) 32 16 48
Phone rings (Pr) 32 16 48
. Children voices (Cv) 54 26 80
NERY] Gunshots (Gs) 150 74 224
Ny.Ng Human screams (Hs) 48 24 72
= _ IS (14) Machines (Mc) 38 18 56
N, Ny m=1
n=1 Cymbals (Cy) 32 16 48
Total 670 330 1000

E. Mutual Information . . . -
Most of the signals are impulsive. We took 2/3tfa training

The feature vectors were reduced using the mutwald 1/3 for the test. We suggested for classificathe cross-
information feature selection algorithm. validation procedure [17].

The information found commonly in two random vatésbis W€ use the following couples:

defined as the mutual information between two \deis X C'V 3C=[2(_'5)1 2(_4),--_-1 2 ety=[209, 29, ., 2. _
and Y, and it is given as [12]: Fig. 2 depicts environmental sounds spectrogranas their

reassigned representation. Each class containsdsowith
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very different temporal or spectral characteristilevels,
duration, and time alignmentFor example door slams (D
present a wide frequency band but with a short dura

In addition, for the children voices (Cv), we caistithiguish
the presence of the privilege frequencies. Conngrphone
rings (Pr), we notice that they present fundame
frequencies.

We notice asignificant improvement in localization of tl
reassigned spectrogram in tiffrequency domain i
comparison to the spectrogram obtained by Shorte’
Fourier Transform. However, as illustrated in Figthe bes
localization amongst the considered reentations is
obtained with the reassignment method applicatiar
spectrogram.

o Spectrogram Door Slams o Spectrogram Children Voices

-

0
6 o7 o8 0% o 02 4 o8 08 1 12 14

.t Spectrogram Phone Rings

04 06 0B 1 12 (] 02 04 [ [T] 1
Tina {3 Timt f8)

Reassigned Spectrogram Phone Rings

Fig. 2. Spectrograms and their reassigned representatid
environmental sound classes

We also remark also thtte reassigned spectrogram provi
good concentration at lower frequencies, but po
concentration at higher frequencietn other words,the
reassigned spectrogram obtained by the Short Timeiér
transform (STFT) enhances the concentration of
components in comparison to the spectrogram, atodes nt
contain any cross terms as shown in Fig.2.

The advantage of the STFT in this case is tt does not
contain cross term&pectrograms are extracted through S
Time Fourier Transform with theumber of frequency poin
equal to 512, the Hanningindow is used, which divides ti
signal into segments of length equal 266 with 192-point
overlap.

In addition, for reassignment spectrogrewe keep the same
parameters as used for spectrogreonstruction. Otherwist
we use the smoothing Hanning winda# length 256 witk
192-point overlap.

Indeed, the keydea consists in application of reassignmr
method to 3 spectrogramtphes, then passed through a log-
Gabor filters concatenation, after that an averagmeatation is
applied, followed by the mutual information crigerifor
optimization.

TABLE Il
RECOGNITIONRATES FOR AVERAGED OITPUTSOF 3 REASSIGNED
SPECTROGRAMPATCHESWITH 12 LOG-GABOR FILTERS APPLIED TO ONE
AGAINST-ONE SVM’ S BASED CLASSIFIER VITH GAUSSIAN RBF KERNEL

3 Reassigned SpectrograrPatches
with 12 log-Gabor filters concatenatior
Parameters Classif.
Classes Kernel Rate (%)
(c,y)
Ds (& 2t9) 94.87
Ep (&9 2t9) 88.75
Ch (F° 29) 78.57
Db (29 26 89.58
Pr (7B 2M) 93.75
Cv (ZD 269 85.71
Gs (29 29) 95.83
Hs (&9 2t9) 95.58
Mc (209 200 92.85
Cy (Z3 2 93.30

Results of third approach are show! Table 2. Besides, we
obtained in this approacan averaged accuracy reof the
order 90.87%his result is better than the first method re
but isslightly lower than the second method result. Atkis
method leads t@n increase approximateh% of averaged
recognition compared to thesult obtaine when we applied
12 log-Gabor filters to three patches spectrog[11] without
use of reassignment method.

Moreover, applying the reassignment method on
environmental sound spectrogram enhancesperformance
of used system.

The experimental results reported in this work shbat the
reassignment method provides a higher improvemerhe
environmental sounds classification. Therefore, hwihe
reassignment method we can easily interpreispectrogram
signature.

In addition,the important point of the reassignment methc
the proper choice of smoothing kernel in orto produce
simultaneously a high concentration of the sigmathpgonents
[8]. The purpose of reassignment metlis to build a readable
time-frequency representation proce

Previous studies [10], [18fhow that using reassignme
method can improve the detection, tladditive sound
modeling, andthe classification performanciNevertheless,
features extracted from resdgned spectrogram improve t
classification results as shown in Tabli

SVMs have proven to be robust in high dimensionko.
SVMs are well founded mathematically treach good
generalization while keepintggh classification accurac
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The performance of the proposed classificationesyshas
been evaluated and compared with our previous wxyrk
using a set of synthetic test signals. Howeves, gloposed [12]
method maintains overall good performance. The Ex@ats
results are satisfactory, which encourages us vestigate [13]
better in the reassignment method.

IV. CONCLUSIONS [14]

In this paper, we propose a robust method f&°!
environmental sound classification, based on rgassent
method and log-Gabor filters. We show how this rodtis
efficient to classify the environmental sounds. iBes, our
method uses an averaged 12 log-Gabor filters cenatibn
applied to 3 reassigned spectrogram patches.
classification system obtains good averaged claatiin
result of the order 90.87%.

Furthermore, reassignment method improves claasijic
results. It used as the key element of obtainingoptimal
classification compared to our previous methods].[14
addition, this paper deals with robust featuresl usith one-
against-one SVM-based classifier in order to hawystem
that quietly works, independent of recording coiodi.
Future research directions will include other metho
extracted from image processing to apply in envitental

sounds classification and will can be improved wlhdlgging

deeply into reassignment methods.

[16]

[17]
Our
[18]
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